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Abstract

The effect of irregularities on the rate of heat conduction from a two-dimensional isothermal surface into a semi-

infinite medium is considered. The effect of protrusions, depressions, and surface roughness is quantified in terms of the

displacement of the linear temperature profile prevailing far from the surface. This shift, coined the displacement length,

is designated as an appropriate global measure of the effect of the surface indentations incorporating the particular

details of the possibly intricate geometry. To compute the displacement length, Laplace�s equation describing the

temperature distribution in the semi-infinite space above the surface is solved numerically by a modified Schwarz–

Christoffel transformation whose computation requires solving a system of highly non-linear algebraic equations by

iterative methods, and an integral equation method originating from the single-layer integral representation of a

harmonic function involving the periodic Green�s function. The conformal mapping method is superior in that it is

capable of handling with high accuracy a large number of vertices and intricate wall geometries. On the other hand, the

boundary integral method yields the displacement length as part of the solution. Families of polygonal wall shapes

composed of segments in regular, irregular, and random arrangement are considered, and pre-fractal geometries

consisting of large numbers of vertices are analyzed. The results illustrate the effect of wall geometry on the flux dis-

tribution and on the overall enhancement in the rate of transport for regular and complex wall shapes.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of heat transport across the surface of a

conductive medium with arbitrary geometry is of inter-

est in a wide variety of engineering applications includ-

ing the cooling of standard size and miniaturized devices

in microelectronics (e.g., [1,2]). Of particular interest is

the study of the effect of natural and manufactured ir-

regularities and the identification of an optimal geome-

try that maximizes the overall transport rate (e.g, [3]). In

most applications, because the thermal conductivity is

large or the characteristic length scale of interest is small,

the Peclet number is high, conduction dominates con-

vection, and the temperature field satisfies Laplace�s
equation to leading order approximation.

One convenient model for studying the effect of sur-

face geometry is provided by an isothermal boundary

containing a large number of finite-size or microscopic,

regular or random indentations. Transport occurs into a

semi-infinite conducting medium lying on one side of the

boundary, and is driven by a temperature gradient im-

posed far from the boundary. In practice, the tempera-

ture gradient may be induced by a cooling stream or

liquid film or by the presence of another isothermal

surface placed above the irregular surface. The aim of

the analysis is to assess the influence of the surface

depressions, protrusions, or roughness on the rate of

transport relative to that prevailing in the absence of the

irregularities.

In the case of a virtually infinite rough or periodic

surface, the effect of the irregularities can be quantified

in terms of the displacement of the linear temperature
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profile prevailing far from the surface. If the surface is

perfectly smooth, the displacement length vanishes, as

required by the designation of the reference shape. This

measure of enhancement may also be used to charac-

terize a non-periodic surface of finite extent as well

as a smooth surface containing solitary projections or

depressions, provided that the periodic extension is

considered. The displacement length provides us with

an unambiguous as well as convenient global measure

of the effect of the possibly intricate microstructures

without explicit reference to the particulars of the geo-

metry.

To illustrate the usefulness of the displacement

length, consider heat conduction from an infinite iso-

thermal surface whose profile is described by the equa-

tion y ¼ HðxÞ, where H is a periodic function of x, with
transport occurring into the upper half plane. The

temperature field at steady state satisfies Laplace�s
equation r2T ¼ 0, subject to the boundary condition

that T ¼ T0 over the surface, and oT=oy ! �q=j far

from the surface, where q is a specified constant flux, and

j is the thermal conductivity. In the case of a flat surface

located at y ¼ HðxÞ ¼ 0, the solution is readily found by

inspection to be T ¼ T0 � qy=j. For non-flat periodic

geometries, the temperature field in the vicinity of the

surface and the distribution of flux over the rough sur-

face are non-trivial to calculate. In all cases, however, as

y ! 1, the temperature profile exhibits the asymptotic

behavior T � T0 � qðy � lÞ=j þ edt, where l is the dis-

placement length and edt stands for exponentially de-

caying terms. If the far field flux condition is replaced

with the requirement that T ¼ T1 over a flat surface

located at y ¼ d, where d is large enough to allow the

asymptotic behavior to be established, the flux is given

by

q ¼ � j
1� l=d

T1 � T0
d

� �
: ð1Þ

If the displacement length l is positive (negative), the

factor ð1� l=dÞ�1
represents an increase (decrease) in

heat flux in the presence of the crenelations.

In the Appendix A, it is shown that the displacement

length reaches an absolute maximum in the limit as the

irregularities become dense, yielding a coated surface

with a uniformly shifted profile. In particular applica-

tions, however, geometrical and other manufacturing

restrictions will not make this choice acceptable, and

non-dense profiles are considered. Fyrillas and Pozriki-

dis [4] recently computed the displacement length for a

doubly-periodic three-dimensional surface with sinusoi-

dal corrugations of arbitrary height and wave length

using asymptotic and numerical methods. The main

objective of the present study is to illustrate the magni-

tude of the displacement length for complex and pre-

fractal families of two-dimensional surfaces, and thereby

demonstrate the precise effect of an intricate wall geo-

metry on the enhancement in the overall transport rate.

Wall roughness in two dimensions may be simulated

by considering polygonal periodic profiles. For this

family of shapes, detailed crenelations may be con-

structed by introducing an increasingly high number of

vertices at random or recursively computed positions.

Flat surfaces containing simple symmetrical asperities

were considered by Taylor [5] and Richardson [6] in their

studies of viscous flow along a periodically indented

wall. Following a proposition by Mandelbrot [7], fractal

models have been used to mimic natural surface rugos-

ity, and the results provided scaling laws and quantita-

tive predictions (e.g., [8,9]). Random irregularities and

pre-fractal surfaces will also be considered in the present

study.

In the case of two-dimensional conduction, complex-

variable theory provides us with an expeditious venue

for computing analytical and numerical solutions. In

particular, conformal mapping allows us to map the ir-

regular domain of solution in physical space onto the

upper-half mapped plane wherein a simple solution for

the problem under consideration is available. A suitable

mapping for periodic geometries may be constructed by

modifying the classical Schwarz–Christoffel transfor-

mation, as discussed by Floryan [10,11] who extended

the methods of Davis [12] for coordinate grid genera-

tion. Owen and Blatt [13] used the modified Schwarz–

Christoffel mapping to study flow over a wall with

rectangular depressions and curved tops.

To derive the Schwarz–Christoffel transformation,

the wall vertices must be mapped from their natural

location in the physical plane to new locations along the

real axis of the transformed plane. The mapped loca-

tions themselves appear implicitly in the conformal

mapping function. We shall demonstrate that, for the

very simple case of a periodic wall composed of trian-

gular asperities, the mapped locations can be written

down immediately based on global constraints involving

the vertex turning angles. In general, however, the

mapped locations must be computed using iterative

methods. One advantage of the conformal mapping

formulation is that the cumulative heat transport rates

along the wall from an arbitrary point up to the physical

wall vertices is proportional to the difference between the

mapped vertex locations. This feature circumvents the

computation of the rate of transport by finite difference

approximations, and thereby prevents the introduction

of further numerical error.

In the case of a periodic wall consisting of linear

segments, the conformal mapping is expressed in terms

of an infinite product that must practically be truncated

at a finite level. For the semi-infinite domain presently

considered, this truncation level is restrictively high,

leading to significant inaccuracies. In contrast, when the

solution domain is an infinite strip, the truncation level
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is proportional to the separation between the two con-

fining surfaces, and truncation at a moderate level is

permissible. In Section 2, we shall show that the infinite

product can be expressed in closed form, thereby elim-

inating an important source of error.

To provide a check on the accuracy of results ob-

tained by the conformal mapping method, and also

demonstrate an alternative method of computation,

we formulate the solution using the boundary-integral

method. In this method, the temperature field is ex-

pressed in terms of a surface distribution of periodic

Green�s functions constituting a single-layer harmonic

potential. Although this formulation is more versatile in

that it can handle arbitrarily shaped boundaries, it is

practically limited by high computational cost placing

restrictions on geometrical complexity. One advantage

of the boundary-integral method is that it furnishes the

displacement length as part of the solution of an integral

equation for the surface flux distribution.

A useful analogy can be made between the problem

of heat conduction presently considered and the prob-

lem of shear flow over a dense, perforated, or porous

wall [14]. In the case of unidirectional flow along a cy-

lindrical wall, the fluid velocity satisfies Laplace�s
equation with the no-slip condition required over a solid

surface and the zero shear stress condition required far

below a perforated or porous surface. In all cases, the

shear rate approaches a specified value a long way above

the surface, and a slip velocity that is analogous to the

temperature displacement length l is established over the

surface. Our results for the heat conduction problem

may thus be interpreted directly in the context of hy-

drodynamics.

2. Numerical methods

We consider Laplace�s equation for the temperature

distribution in a two-dimensional semi-infinite domain

lying above an isothermal periodic wall with polygonal

shape. The solution will be computed by two comple-

mentary methods involving conformal mapping and a

representation in terms of a boundary distribution of

point-source dipoles.

2.1. Conformal mapping

In the conformal mapping method, the actual solu-

tion domain is projected to the upper half plane using

a suitably adapted version of the Schwarz–Christoffel

transformation. An analytic function can then be found

in the mapped plane that satisfies properly transformed

boundary conditions. In the present case, the Dirichlet

boundary condition along the wall is preserved by the

transformation, and the main difficulty lies in calculating

the particular details of the transformation.

Consider a wall composed of straight line segments

with N vertices, as shown in Fig. 1. Extending the work

of Floryan [11] and Davis [12], we find that the trans-

formation mapping a piecewise-linear wall from the

physical z ¼ xþ iy plane onto the f ¼ n þ ig plane has

the differential form

dz
df

¼ R
YN
j¼1

Y1
k¼�1

ðf � kL� ajÞaj ; ð2Þ

where R is a complex constant, aj, for j ¼ 1; . . . ;N , are

the image points of the physical wall vertices zj located
on the n-axis, and paj are the turning angles from one

wall segment to the next, as illustrated in Fig. 1. The

infinite k product represents the contributions from all

periods. The angles are taken to be positive if the turning

is clockwise, and negative otherwise. The first and last

turning angles are measured with respect to the x-axis.
Appropriate branch cuts are made in the lower half

f-plane to ensure that the right hand side of (2) is a

continuous, single-valued, function over the domain of

interest, which is the upper-half plane. Since the wall is

periodically repeated, as shown in Fig. 1, the turning

angles over a single period add up to zero,

XN
j¼1

paj ¼ 0: ð3Þ

The second product in Eq. (2) with respect to k maps a

repeated wall of period L onto the real line in the f-
plane.

According to Riemann�s mapping theorem (e.g.,

[15]), a unique transformation can be specified by re-

quiring that three arbitrary points in the z-plane are

mapped onto three chosen points in the f-plane. The
remaining coefficients aj are fixed by the transformation.

Following Floryan [10,11], we demand that the origin in

physical space map onto the origin in the transformed

space, and further insist that the point zN ¼ L be mapped

onto the point aN ¼ 1. The selection of the third arbi-

trary point, identified with the degenerate corner at

Fig. 1. A typical wall period of length L with N ¼ 6 vertices.

The wall is repeated periodically along the x-axis.
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infinity in the upper-half z-plane, is implicit in the nature

of the transformation.

Floryan [10] showed that, in the case of a strip- or

channel-like solution domain, the infinite product in (2)

can be truncated at very few terms without significant

loss of accuracy. Truncation can also be performed in

the case of a semi-infinite domain, but the truncation

level must be raised as the transformation is evaluated at

increasingly large distances from the wall. This difficulty

can be entirely circumvented by use of the identity

sinðpzÞ ¼ pz
Y1
k¼1

1
�

� z2=k2
�
; ð4Þ

(e.g., [16]), which can be used to reduce (2) to the sim-

plified form

dz
df

¼ R
YN
j¼1

fsinpðf � ajÞ=Lgaj : ð5Þ

Upon integration, we obtain the relationship

z ¼ R
Z f

0

gðf0Þdf0; ð6Þ

where gðfÞ is the product on the right hand side of (5).

When f ¼ aN ¼ 1, the integral in (6) is equal to unity, as

may readily be shown using contour integration. Thus,

in order that zN ¼ L, it must be R ¼ L. This realization is

a further departure from Floryan�s formulation [11] who

treated R as an unknown to be computed as part of the

solution. Moreover, performing the integration in (6)

along the contour n ¼ n0, where 0 < n0 < 1, we find

that, to be able to satisfy the far field condition, the

identity

XN
j¼1

ajaj ¼ 0 ð7Þ

must hold for any wall with N vertices. We shall see later

in this section that this identity can be used to derive an

exact analytical solution for a wall with a saw-tooth

profile.

With the transformation (6), the solution of the

original problem becomes a simple matter in the f-plane.
For any analytic complex function, w ¼ wðn; gÞþ
iT ðn; gÞ, the real and imaginary parts together satisfy the

Cauchy–Riemann equations, and are thus harmonic

functions. The solution satisfying the Dirichlet wall

condition and far-field condition in our case is sim-

ply w ¼ �qLf=j þ iT0, and so w ¼ �qLn=j and T ¼
�qLg=j þ T0, where q is the flux far from the wall. The

satisfaction of the far-field condition can be confirmed

by taking the limit f ! 1 in (5), and recalling that the

sum of the turning angles is zero.

The rate of heat transport across the wall follows

immediately once the transformation is known. In par-

ticular, the integrated flux or cumulative rate of trans-

port across the wall from the origin up to an arbitrary

point A is given by the expression

qA ¼ �j
Z A

0

oT
on

ds ¼ �j
Z A

0

ow
os

ds ¼ qLnA; ð8Þ

where o=on and o=os are the normal and tangential de-

rivatives with respect to distance normal to or along

the physical wall, respectively, ds is the differential arc

length along the wall, and nA is the image of the point

z ¼ A in the f-plane. The cumulative rate of transport

corresponding to each vertex is thus proportional to the

vertex location along the n-axis, and the total transport

rate over a single period is equal to qL, consistent with
the far field condition oT=oy ! �q=j.

The displacement length l is found by integrating the

differential Eq. (2) with respect to g along a line of fixed

n, starting from an arbitrary point along the n axis and

subtracting the linear part of the solution. Correspond-

ingly, the dimensionless displacement constant cD 
 l=L
is calculated using the formula

cD ¼ i

Z 1

0

½gðn0; gÞ � 1�dg; ð9Þ

where the location n0 is arbitrary. Integrating Eq. (2)

along lines of constant g produces isotherms in the

physical plane.

Consider a wall with a saw-tooth profile (corre-

sponding to N ¼ 3) of height h, where each period in

physical space contains three vertices located at z1 ¼ 0,

z2 ¼ X þ ih, z3 ¼ Lmapped at the vertices a1 ¼ 0, a2 ¼ N
and a3 ¼ 1. In this case, for a given value of X , the value

of N follows immediately from the constraint Eq. (7) and

the knowledge of the turning angles. For an isosceles

triangle (X ¼ L=2), we therefore find that N ¼ 1=2 for

any h. For a non-periodic wall with a single triangular

protrusion, the form of the conformal mapping is a

standard textbook exercise involving beta functions.

Interestingly, constraint (7) provides no new informa-

tion for the mapped vertices of a wall containing sym-

metric triangular asperities corresponding to N ¼ 5, as

shown in Fig. 2, but reduces instead to a verifiable

statement about the vertex turning angles. For non-

symmetric wall profiles, the constraint reduces the

number of unknowns by one unit and is thus of little

practical value.

Determining the mapping of the vertices in the

physical plane to those in the transformed plane in the

general case requires solving a system of highly non-

linear equations, and this poses a substantial problem,

not least because of the way in which the mapped ver-

tices appear inside the transformation. For practical

purposes, the solution must be found numerically using

a suitable means of iteration.

We have implemented a scheme similar to that de-

veloped by Floryan [11]. The known variables are the N
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wall vertices zj and associated turning angles paj, and

the unknowns are the locations of the wall vertices in the

transformed plane, aj. Although these vertices should all

lie on the real n-axis, they are assumed to be complex in

the implementation. The iteration procedure involves

the following steps: (1) Make guesses for aj; (2) compute

estimates for the wall nodes in physical space, ẑzj, ac-
cording to the transformation (6); (3) adjust the guesses

for the aj using the correction formula

jaj � aj�1j ¼ ljâaj � âaj�1j
jzj � zj�1j
jẑzj � ẑzj�1j

; ð10Þ

where âaj are the most recent estimates of the exact values

of aj available from the previous iteration, and the pa-

rameter l is chosen at each sweep to ensure aN ¼ 1. The

procedure is repeated until the aj�s have converged to

within a prescribed tolerance. In practice, for most of

the wall shapes considered, initial guesses for the aj�s
evenly spaced between 0 and 1 are sufficient to ensure

convergence.

In the numerical implementation, the Schwarz–

Christoffel integrals are evaluated using the 20-point

Gauss–Legendre quadrature (e.g., [17]). To ensure high

accuracy, the singularities due to the negative turning

angles are subtracted out and integrated exactly. The

displacement length is evaluated by integrating along

a line of constant n up to a large enough g. Numerical

testing confirmed that the converged locations of the

vertices are independent of the starting point within the

quoted accuracy. We found that, for the most compli-

cated wall shapes considered, the numerical method is

sufficient to achieve an accuracy of four decimal places

or better in the computation of the displacement length,

provided that the convergence tolerance is sufficiently

low. For small values of the number of vertices N , in the

range 10–20, the whole calculation takes only a few

seconds, but the cost quickly escalates as N is raised.

Fig. 3 shows the rate of convergence for two cases, the

third and second iterates of the Von Koch and Min-

kowski curves, respectively, both to be discussed in

Section 3. The error at the nth iteration is measured as

eðnÞ ¼
PN

j¼1ðzj � ẑzjÞ2. It is clear from the two plots that

the rate of convergence is linear.

2.2. Double-layer representation

A competitive alternative to the conformal mapping

method is provided by the double-layer representation

Fig. 2. Illustration of regular (non-random) symmetric protrusions (not drawn to scale). In each case, the width of the asperity is b and
the period is L. From the left, the heights are h ¼

ffiffiffi
3

p
=2,

ffiffiffi
3

p
=2, 8.0 respectively. For the M-shaped wall, a ¼ hð1� b=LÞ, where h is the

maximum height of the protrusions.

Fig. 3. Rate of convergence for (top) the third iterate Von Koch curve with 49 nodes, and (bottom) the second iterate Minkowski

curve with 57 nodes. In both cases, eðnÞ denotes the error after the nth iteration.
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(e.g., [18]). In this formulation, the temperature at the

point x0 ¼ ðx0; y0Þ that lies in the physical domain of

solution is expressed in the integral form

T ðx0Þ ¼ T0 þ
1

j

Z
C
Gðx; x0Þf ðx0ÞdlðxÞ �

q
j
ðy0 � lÞ;

ð11Þ

where C is one period of the wall and l is the a priori

unknown displacement length. f ¼ �jn � rT is the heat

flux at the wall, n is the unit vector pointing into the

solution domain, and G is the singly-periodic upward-

biased Green�s function of Laplace�s equation available

in closed form [14]. A thermal energy balance requires

the integral constraint

Z
C
fdl ¼ qL; ð12Þ

which can be regarded as the counterpart of relation (8).

Writing the integral representation (11) at a point x0

located at the periodic wall, and enforcing the boundary

condition T ¼ T0, we obtain an integral equation of the

first kind for the wall flux f ,Z
C
Gðx; x0Þf ðx0ÞdlðxÞ ¼ qðy0 � lÞ; ð13Þ

supplemented by the integral constraint (12). To com-

pute the solution, we discretize one period of the wall

into a collection of boundary elements, and approximate

the wall flux f with a constant function over each ele-

ment. Applying the integral equation at the mid-point of

each element provides us with a system of linear equa-

tions for the constant values of the flux. The linear

system is solved by the method of Gauss elimination,

and the displacement length l is obtained directly as part

of the solution. The values of cD 
 l=L calculated in this

way with 32 boundary elements along each wall segment

are correct to three significant figures.

3. Results

Our main objective is to quantify the effect of wall

roughness on the rate of transport in terms of the di-

mensionless displacement constant cD. In the numerical

studies, we consider simple regular wall shapes, and then

more complex fractal-like and random patterns. All re-

sults presented in Sections 3.1–3.4 were obtained by the

conformal mapping method discussed in Section 2.1.

Results obtained by the double-layer representation are

discussed in Section 3.5.

A theorem of geometrical inclusion states that the

rate of transport across any surface of constant g is

higher than that across any other such line which it

physically encloses from above. The proof can be

adapted to show that the value of cD for a given wall

must be less than that for any wall which encloses the

given wall from above, as discussed in the Appendix A.

Consequently, the value of cD is bounded from above by

the maximum wall height. If the maximum and mini-

mum heights of a specified wall are h1L and �h2L, re-
spectively, where h1 and h2 are positive dimensionless

coefficients, then it follows that �h2 6 cD 6 h1. More

general theorems of geometrical inclusion are available

in the literature (see, for example, [19]).

3.1. Simple protrusions

The simplest example is the saw-tooth wall with tri-

angular asperities considered earlier in Section 2. For

certain special values of the angles subtended by the

triangle sides, the displacement coefficient cD can be

computed exactly by analytical methods. For example, if

a2 ¼ �2=3, corresponding to an equilateral triangle, we

find cD ¼
ffiffiffi
3

p
=4þ 3 logð3Þ=4p, which agrees to seven

decimal places with the numerically calculated value.

Next, we investigate the three regular (i.e. non-

random) symmetric asperities presented in Fig. 2. Fig.

4 shows a graph of cD plotted against the ratio of

the asperity width to wave length, b=L, with h held

constant. As the ratio b=L is increased, the rectangular

pulse changes continuously from a flat wall of height

h ¼
ffiffiffi
3

p
L=2, whereupon cD ¼ h, to an infinite sequence

of periodic spikes of height h. The triangular pulse

changes smoothly from a saw-tooth wall, for which

cD ¼ 0:6952 by the previous analysis, to a sequence of

periodic spikes of height h. The numerical method fails

to converge to within an acceptable accuracy when the

triangular protrusion width approaches unity, due to the

increasing proximity of the two vertices at the left hand

end.

While the surface length is constant for the rectan-

gular pulse, it is reduced by about 27% for the triangular

pulse when b=L is changed from zero to unity. The

corresponding changes in cD are 33% for the rectangular

pulses, and 7% for the triangular pulses. Both protru-

sions have the same constant height, each beginning as a

spike at b=L ¼ 0 with the same surface length. It would

appear therefore that significant differences in cD are due

predominantly to changes in shape rather than an ap-

preciable increase in surface area. Although it is not

clear what the most important factor is, we do see in this

example that a significant reduction in surface length

leads to a much smaller variation in the size of the dis-

placement constant.

In both of the previous two cases, the displacement

constant varies monotonically with the asperity width. A

slightly artificial example may be constructed in which

the dependence is non-monotonic. Consider the M-

shaped pulse shown in Fig. 2. If we set a ¼ hð1� b=LÞ
and h ¼ 8, then zero asperity width corresponds to a

symmetric saw-tooth wall for which cD ¼ 7:7846, while
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unit asperity width gives a flat wall with cD ¼ 8. In this

case, as b=L is raised, the curve is no longer monotonic

but develops instead a local minimum, as shown in Fig.

4(b).

3.2. Von Koch fractal shapes

The effects of true wall roughness can be simulated by

considering more intricate wall designs. A convenient

starting point is the fractal wall provided by the Von

Koch snowflake curve (e.g., [20]). This is constructed

beginning with a straight line segment of length 3L=2,
removing the middle third, and replacing it with an

equilateral triangular hump so that the length of all

segments is equal. The action is then performed on the

individual new segments, and the whole process is re-

peated ad infinitum to produce the fractal. In the present

implementation, the curve is truncated to represent a

single period of a periodically repeated wall. After m
iterations, where m ¼ 0 refers to the initial straight seg-

ment, the total surface length of the truncated curve is

equal to ð3L=2Þð4=3Þm�1
, which diverges as m ! 1. For

large m, we are able to consider highly crinkly walls with

large surface areas. The wall corresponding to the dis-

cretization level m ¼ 4 described by 193 vertices is

shown in Fig. 5(a) along with lines of constant temper-

ature. As the number of vertices is increased, the cal-

culation takes a prohibitively long time, and we were

able to consider shapes only up to, and including, the

iteration number m ¼ 5 involving 769 vertices.

Results for the displacement constant cD are sum-

marized in Table 1. The maximum height of the fractal

line is
ffiffiffi
3

p
L=4 ¼ 0:4330L, independent of m. Accordingly,

cD is bounded from above by hmax ¼
ffiffiffi
3

p
=4 at all fractal

iterations. As the intricacy of the indentations increases,

cD grows, albeit at a monotonically decreasing rate.

Although the surface length increases by a third after

each iteration, the percentage change in cD from one

iteration to the next decreases quite sharply, until the

change from m ¼ 4 to 5 is only 0.6%. For m ¼ 5, cD is

about 73% of hmax. According to our earlier discussion,

as m ! 1, cD is expected to approach a limit that is

lower than hmax. The bracketed numbers in Table 1 are

the percentage ratios of the displacement constant to its

corresponding value for a horizontal flat wall which

rests just on top of the fractal. The cumulative trans-

port rates at the vertices are plotted in Fig. 5(b) for each

of the five iterates. Recall that the total heat flux across

the wall is fixed by the far field condition. As a conse-

quence, each of the curves reaches unity at the final

vertex.

Fig. 4. Displacement constant cD for various asperity widths b for the shapes shown in Fig. 2. (a) The solid and dashed lines are for the

rectangular and triangular pulses, respectively, both with a fixed height of
ffiffiffi
3

p
=2. The curve for the triangular pulse stops short of

b=L ¼ 1 due to convergence difficulties. (b) M-shaped wall with height h=L ¼ 8.

Fig. 5. Numerical solutions for the Von Koch pre-fractals.

Top: The Von Koch curve for m ¼ 4 with equally-spaced tem-

perature contours. Bottom: dimensionless cumulative transport

rates, aj, at each vertex, j ¼ 1; . . . ;N plotted against the cu-

mulative arc length along the curve normalized by the total arc

length.
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3.3. Minkowski and other fractal shapes

Other fractal-like shapes can be constructed by

working in a similar fashion: begin with a specific piece-

wise-linear motif, replace each straight segment with a

scaled-down version of that same design, and repeat in

perpetuum (e.g., [20]). Here, we consider two further

examples whose basic motifs are displayed in Fig. 6. In

the numerical studies, each motif is iterated to create a

pre-fractal shape representing a single period of a re-

peating wall. Typical computed temperature contours

are shown in Figs. 7 and 8 along with the cumulative

transport rates at the vertices. Values of the displace-

ment constant cD are summarized in Table 1. Note that

the computations for the m ¼ 3 basic Minkowski curve

described by 449 nodes, fails to converge probably due

to insufficient numerical precision.

The height of the Minkowski island fractal increases

slightly with successive iterates, while the surface length

rises by 41% after each iteration. The percentage change

in the displacement constant drops quite sharply,

reaching only a 1% difference between the fourth and the

fifth iterates. These results are consistent with our ex-

perience that, beyond a certain point, the introduction

of an increasingly fine wall structure has little effect on

the overall transport rate. This viewpoint is also re-

flected in the crowding of the individual transport rates,

aj, as m increases in Fig. 8. It is interesting to observe

that the variation of the bracketed numbers in Table 1,

representing the percentage ratios of the displacement

constant to its corresponding value for a horizontal flat wall that rests just on top of the fractal, is monotonic for

the Von Koch curve, but fluctuates for the Minkowski

island fractal.

3.4. Random shapes

Models of wall roughness can be constructed by

admitting a degree of randomness into the locations of

the wall nodes. Keeping the end-vertices fixed, a single

wall period can be generated by sampling the internal

nodes randomly from a uniform distribution. Points

Table 1

Summary of calculated values of cD; the values of cD for dif-

ferent iterates, m, of the various periodic fractal-like walls

Iteration

number m
cD Von Koch cD Minkowski cD Minkow-

ski island

1 0.2654 (61.29) 0.2591 (77.73) 0.1103 (44.12)

2 0.2970 (68.58) 0.3014 (72.34) 0.1422 (56.88)

3 0.3104 (71.68) – 0.1550 (55.12)

4 0.3152 (72.79) – 0.1600 (56.89)

5 0.3173 (73.27) – 0.1620 (56.82)

The bracketed numbers give cD as a percentage of its maximum

possible value, corresponding to a horizontal flat wall which

just touches the top of the fractal.

Fig. 6. The fundamental motifs for (a) the basic Minkowski

fractal, and (b) the Minkowski island fractal.

Fig. 7. Top: Minkowski pre-fractal m ¼ 4 and pattern of evenly

spaced temperature contours. Bottom: dimensionless transport

rates, aj, at each vertex, each vertex, j ¼ 1; . . . ;N plotted

against the cumulative arc length along the curve normalized by

the total arc length.

Fig. 8. Top: Minkowski island pre-fractal m ¼ 3 and pattern of

evenly spaced temperature contours. Bottom left: Minkowski

island m ¼ 5. Bottom right: The corresponding dimensionless

transport rates, aj, at each vertex, j ¼ 1; . . . ;N , are plotted

against the cumulative arc length along the curve normalized by

the total arc length.
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picked in this way for non-dimensional x 2 ð0; 1Þ,
y 2 ½�h; h� have a mean position (1=2; 0) and variances

(1=12; h2=2) in the respective directions. The points can

then be sorted into order and joined up to create the

wall. A better way to generate an irregular surface is to

join up the random points directly and repeat the gen-

eration process until a non-intersecting wall has been

found. This generation process allows the wall to dou-

ble-back on itself, as shown in Fig. 9(a). Note that the

presence of sharp crevices has little effect on the estab-

lished temperature field. This observation is consistent

with the Phragm�een–Lindel€oof theorem (e.g., [15]), which

predicts exponential decay of a complex function in a

sharp crevice. One pragmatic constraint of this ap-

proach is that the computational expense for simply

generating the wall dramatically rises as the number of

vertices increases. As a compromise, we generate an

initial motif using a small number of random points, and

then iterate m times to create a pre-fractal shape, as

described in previous sections. Results for a sample

random pre-fractal are displayed Fig. 9(b).

A run of 250 random walls with four vertices, each

with dimensionless heights distributed between 0 andffiffiffi
3

p
=4, yielded the average value �ccD ¼ 0:1956, with a

standard deviation of 0.0879. This can be compared with

the value 0.2654 for the first iteration of the Von Koch

curve with four nodes. Another run of 250 random walls

with the same variation in heights but 13 nodes pro-

duced the average value �ccD ¼ 0:2916, with standard

deviation 0.0419. This can be compared with the value

0.2970 for the second Von Koch iteration with 13 nodes.

In both cases, the surface lengths averaged over all the

random walls were comparable to those of the pre-

fractals.

The random pre-fractal shown in Fig. 9(b) is only a

small perturbation of the flat shape. The displacement

constant is cD ¼ �0:0007, and the mean height of the

curve is 0.0002L. This would appear to be consistent

with the perturbation analysis of Fyrillas and Pozrikidis

[4] for doubly-periodic walls, showing that, when the

height of the corrugations is small compared to the wave

length, the value of cD is proportional to the average

wall height. A run of a hundred random walls with

h ¼ 0:1, shown in Fig. 10(a), produced results that are

consistent with the asymptotic analysis.

Fig. 9. Sample random walls. Top: Random wall with 10 ver-

tices per period. Bottom: Pre-fractal wall with 344 nodes per

period generated from a random motif. The dotted lines are

evenly spaced temperature contours.

Fig. 10. Top: Computation for 100 random walls with five

vertices per period and height h ¼ 0:01. The three lines repre-

sent: (i) the maximum individual wall height, (ii) the mean in-

dividual wall height, and (iii) �cD. Bottom: The modified

displacement constant ~ccD for 150 random walls with h ¼ 1 and

five vertices per period. The displacement constant ~ccD is

bounded between 0 and 1, and its mean value is 0.8159.
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Fig. 10(b) shows results for 150 random walls with

five vertices and reduced height h ¼ 1. To obtain a

measure of the effect of the random corrugations in

comparison to a flat wall of equivalent height, we

compute the ratio ~ccD ¼ ðcD þ h2Þ=ðh1 þ h2Þ. Recall that

for a wall with maximum and minimum heights h1L and

�h2L, the inequality �h2 6 cD 6 h1 holds; accordingly,

06 ~ccD 6 1. The scaled displacement constant ~ccD is the

effective normalized cD if the wall were shifted upwards

so that its lowest point just touches the x-axis. For

the walls displayed in Fig. 10(b), ~ccD has a mean value of

0.8159 with a standard deviation 0.0761. A further run

of 150 random walls for h ¼ 1 with eight vertices pro-

duced a mean value of 0.8604 with a standard deviation

of 0.0389. In line with what has been found for the

fractal-like walls, including a higher number of vertices

does not appear to have a significant effect on the rate of

transport.

3.5. Double-layer formulation

To supply a check on the results computed using the

conformal mapping method, we repeated some of the

calculations using the boundary integral formulation

discussed in Section 2.2. Specifically, the triangular

protrusion shown in Fig. 2 and the Von Koch snowflake

curve were reconsidered. For the former, the height of

the asperity is taken to be 1=ð2
ffiffiffi
3

p
Þ, and cD is computed

for various widths b. For the fractal line, the first three

iterations are examined. Table 2 shows calculated values

of cD using the two different techniques. The agreement

is excellent in all cases.

4. Discussion

We have studied steady conductive heat transport in

a two-dimensional semi-infinite domain bounded by a

wall with piecewise-linear corrugations. Our chief aim

has been to calculate the dimensionless displacement

constant cD regarded as a generic measure of the effect

of wall irregularities. We have simulated the effects of

genuine wall roughness with simple pulse-like protru-

sions, and with both pre-fractal and random wall

shapes, and presented results for intricate curves with up

to 1025 vertices.

For any given shape, the geometrical inclusion theo-

rem requires that cD lie between the maximum and mini-

mum wall heights. In the case of the regular protrusions,

thismeans that themaximumvalue of cD must occurwhen

the asperities are so close together that they resemble a

uniform wall, displaced by the protrusion height from the

x-axis.However, this does notmean that the displacement

constant must vary monotonically with decreasing as-

perity width, as was demonstrated in Fig. 4(b).

The effect of wall surface length does not seem to be

so pronounced as might expected. For the regular pro-

trusions, it appears that the shape plays a more impor-

tant role than the total arc length, and the same holds

true for the pre-fractal geometries. Although the surface

length diverges with the iteration number, the displace-

ment constant tends to a limit quite rapidly. Beyond

a certain stage therefore, the introduction of further

crenelations plays only a minor role.

In this paper, we have concentrated on two-dimen-

sional solutions to the heat conduction equation.

Spanwise variation has been considered recently by

Fyrillas and Pozrikidis [4] for symmetric doubly-peri-

odic walls using the boundary-integral approach. Irreg-

ular or even random three-dimensional shapes have yet

to be investigated.
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Appendix A

In this Appendix A, we demonstrate that the value of

the displacement constant cD for a periodic wall is al-

ways less than that for another wall which envelops from

above the first wall. Consider a fixed wall S1 on which

T1 ¼ T0, enclosing from above another boundary S2 on

which T2 ¼ T0. Both T1 and T2 are assumed to satisfy

Laplace�s equation throughout the region between the

respective lower boundary and y ¼ 1. Let cD1 and cD2

be the displacement constants for the two walls. Starting

from the reciprocal relation for harmonic functions we

may writeZ
X
r � ðT1rT2 � T2rT1ÞdX ¼ 0; ðA:1Þ

over some arbitrary domain of integration X. Take X to

be the area enclosed by a single period L of S1, two

vertical sides at x ¼ 0 and x ¼ L, and a horizontal top at

Table 2

Comparison of the two conformal mapping and boundary-in-

tegral method

b 0.222 0.444 0.666

cD 0.127 (0.127) 0.143 (0.143) 0.160 (0.160)

m 1 2 3

cD 0.176 (0.176) 0.173 (0.173) 0.174 (0.174)

Upper half: cD for the triangular hump shown in Fig. 2 with

asperity width b. Lower half: cD for the first three iterates (m) of
the Von Koch curve. In each case the value computed using the

conformal mapping technique is given, with that found by the

boundary integral method shown in brackets.
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y ¼ d, where d is sufficiently large for the asymptotic

behavior of the harmonic functions to develop. Then,

applying the divergence theorem and using the known

asymptotic forms at infinity, (A.1) becomesZ
S1

T0
oT2
on

�
� T2

oT1
on

�
ds ¼ L2c2ðcD2 � cD1Þ; ðA:2Þ

where c ¼ �q=j, s denotes arc length along the wall, and

n is in the direction normal to S1 pointing into X. The

contributions from the vertical sides cancel due to the

periodicity. Since
R
S1
oT1=onds ¼

R
S1
oT2=onds by heat

conservation, we haveZ
S1

ðT0 � T2Þ
oT1
on

ds ¼ L2c2ðcD2 � cD1Þ: ðA:3Þ

Now T2 is harmonic and must therefore attain its ex-

treme value, namely T0, on the boundary S2. By a similar

argument, oT1=on must always be negative on S1. Hence

the integrand on the left hand side of (A.3) must be

negative throughout the domain of integration. It fol-

lows that the integral itself is negative, which implies

that cD2 < cD1.
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